Regulation of penicillin G acylase gene expression in Escherichia coli by repressor PaaX and the cAMP-cAMP receptor protein complex.

نویسندگان

  • Hyoung Seok Kim
  • Tae Sun Kang
  • Joon Sik Hyun
  • Hyen Sam Kang
چکیده

The pga gene of Escherichia coli W ATCC11105 encodes a penicillin G acylase whose expression is regulated at both the transcriptional and post-transcriptional level. In this work we have shown that PaaX is the repressor of pga expression, and we have identified its binding consensus as TGATTC(N27)GAATCA. We conclude that the process of "PAA induction" actually involves relief of pga from repression by PaaX. Other features of the pga promoter have also been characterized. (i) It has a native class III cAMP-receptor protein (CRP)-dependent promoter with two CRP-binding sites. (ii) The downstream CRP-binding site II has higher affinity. (iii) Binding of cAMP-CRP to both sites (I + II) is required for maximal expression. We have also shown that the PaaX-binding site overlaps with the CRP-binding site I. This implies that PaaX and the cAMP-CRP compete for binding to the region around the CRP-binding site I and therefore have antagonistic effects on pga expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The PaaX repressor, a link between penicillin G acylase and the phenylacetyl-coenzyme A catabolon of Escherichia coli W.

The pac gene, encoding the penicillin G acylase from Escherichia coli W, is regulated by the PaaX repressor of the phenylacetate catabolic pathway. pac expression depends on the synthesis of phenylacetyl-coenzyme A. PaaX and the cyclic AMP receptor protein (CRP) bind in vitro to the Ppac promoter region. A palindromic sequence proposed as the PaaX operator is located upstream of the -35 box ove...

متن کامل

Transcriptional regulation of the divergent paa catabolic operons for phenylacetic acid degradation in Escherichia coli.

The expression of the divergently transcribed paaZ and paaABCDEFGHIJK catabolic operons, which are responsible for phenylacetic acid (PA) degradation in Escherichia coli, is driven by the Pz and Pa promoters, respectively. To study the transcriptional regulation of the inducible paa catabolic genes, genetic and biochemical approaches were used. Gel retardation assays showing that the PaaX regul...

متن کامل

Induction of Human Embryonic Stem Cells into neuronal differentiation by increasing cyclic Adenosine Mono Phosphate

Introduction: To evaluate the cAMP -mediated IBMX (3-IsoButyle -1-Methyl Xanthin) and db-cAMP (dibutyryl cAMP) effects on differentiation of human Embryonic Stem Cells (hESCs) into nerve cells were the objectives of this study. Methods: We have used Royan H1 hESC- derived embryoid bodies with four treatment groups: six days treatment with IBMX (5×10 -4M) and db-cAMP (10 -9M) (referred to as...

متن کامل

The Effect of Aspartate-Lysine-Isoleucine and Aspartate-Arginine-Tyrosine Mutations on the Expression and Activity of Vasopressin V2 Receptor Gene

Background: Vasopressin type 2 receptor (V2R) plays an important role in the water reabsorption in the kidney collecting ducts. V2R is a G protein coupled receptor (GPCR) and the triplet of amino acids aspartate-arginine-histidine (DRH) in this receptor might significantly influence its activity similar to other GPCR. However, the role of this motif has not been fully confirmed. Therefore, the ...

متن کامل

Cyclic AMP (cAMP) and cAMP receptor protein influence both synthesis and uptake of extracellular autoinducer 2 in Escherichia coli.

Bacterial autoinducer 2 (AI-2) is proposed to be an interspecies mediator of cell-cell communication that enables cells to operate at the multicellular level. Many environmental stimuli have been shown to affect the extracellular AI-2 levels, carbon sources being among the most important. In this report, we show that both AI-2 synthesis and uptake in Escherichia coli are subject to catabolite r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 32  شماره 

صفحات  -

تاریخ انتشار 2004